Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 625(7993): 66-73, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38172364

RESUMO

The need for improved functionalities in extreme environments is fuelling interest in high-entropy ceramics1-3. Except for the computational discovery of high-entropy carbides, performed with the entropy-forming-ability descriptor4, most innovation has been slowly driven by experimental means1-3. Hence, advancement in the field needs more theoretical contributions. Here we introduce disordered enthalpy-entropy descriptor (DEED), a descriptor that captures the balance between entropy gains and enthalpy costs, allowing the correct classification of functional synthesizability of multicomponent ceramics, regardless of chemistry and structure. To make our calculations possible, we have developed a convolutional algorithm that drastically reduces computational resources. Moreover, DEED guides the experimental discovery of new single-phase high-entropy carbonitrides and borides. This work, integrated into the AFLOW computational ecosystem, provides an array of potential new candidates, ripe for experimental discoveries.

2.
Nat Commun ; 13(1): 5993, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36220810

RESUMO

Discovering multifunctional materials with tunable plasmonic properties, capable of surviving harsh environments is critical for advanced optical and telecommunication applications. We chose high-entropy transition-metal carbides because of their exceptional thermal, chemical stability, and mechanical properties. By integrating computational thermodynamic disorder modeling and time-dependent density functional theory characterization, we discovered a crossover energy in the infrared and visible range, corresponding to a metal-to-dielectric transition, exploitable for plasmonics. It was also found that the optical response of high-entropy carbides can be largely tuned from the near-IR to visible when changing the transition metal components and their concentration. By monitoring the electronic structures, we suggest rules for optimizing optical properties and designing tailored high-entropy ceramics. Experiments performed on the archetype carbide HfTa4C5 yielded plasmonic properties from room temperature to 1500K. Here we propose plasmonic transition-metal high-entropy carbides as a class of multifunctional materials. Their combination of plasmonic activity, high-hardness, and extraordinary thermal stability will result in yet unexplored applications.

3.
Chempluschem ; 87(11): e202200246, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35946984

RESUMO

Invited for this month's cover are researchers from Bundesanstalt für Materialforschung und -prüfung (Federal Institute for Materials Research and Testing) in Germany, Friedrich Schiller University Jena, Université catholique de Louvain, University of Oregon, Science & Technology Facilities Council, RWTH Aachen University, Hoffmann Institute of Advanced Materials, and Dartmouth College. The cover picture shows a workflow for automatic bonding analysis with Python tools (green python). The bonding analysis itself is performed with the program LOBSTER (red lobster). The starting point is a crystal structure, and the results are automatic assessments of the bonding situation based on Crystal Orbital Hamilton Populations (COHP), including automatic plots and text outputs. Coordination environments and charges are also assessed. More information can be found in the Research Article by J. George, G. Hautier, and co-workers.

4.
Chempluschem ; 87(11): e202200123, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35762686

RESUMO

Understanding crystalline structures based on their chemical bonding is growing in importance. In this context, chemical bonding can be studied with the Crystal Orbital Hamilton Population (COHP), allowing for quantifying interatomic bond strength. Here we present a new set of tools to automate the calculation of COHP and analyze the results. We use the program packages VASP and LOBSTER, and the Python packages atomate and pymatgen. The analysis produced by our tools includes plots, a textual description, and key data in a machine-readable format. To illustrate those capabilities, we have selected simple test compounds (NaCl, GaN), the oxynitrides BaTaO2 N, CaTaO2 N, and SrTaO2 N, and the thermoelectric material Yb14 Mn1 Sb11 . We show correlations between bond strengths and stabilities in the oxynitrides and the influence of the Mn-Sb bonds on the magnetism in Yb14 Mn1 Sb11 . Our contribution enables high-throughput bonding analysis and will facilitate the use of bonding information for machine learning studies.

5.
Nat Commun ; 12(1): 5747, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34593798

RESUMO

High-entropy ceramics are attracting significant interest due to their exceptional chemical stability and physical properties. While configurational entropy descriptors have been successfully implemented to predict their formation and even to discover new materials, the contribution of vibrations to their stability has been contentious. This work unravels the issue by computationally integrating disorder parameterization, phonon modeling, and thermodynamic characterization. Three recently synthesized carbides are used as a testbed: (HfNbTaTiV)C, (HfNbTaTiW)C, and (HfNbTaTiZr)C. It is found that vibrational contributions should not be neglected when precursors or decomposition products have different nearest-neighbor environments from the high-entropy carbide.

6.
Adv Mater ; 33(42): e2102904, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34476849

RESUMO

The entropy landscape of high-entropy carbides can be used to understand and predict their structure, properties, and stability. Using first principles calculations, the individual and temperature-dependent contributions of vibrational, electronic, and configurational entropies are analyzed, and compare them qualitatively to the enthalpies of mixing. As an experimental complement, high-entropy carbide thin films are synthesized with high power impulse magnetron sputtering to assess structure and properties. All compositions can be stabilized in the single-phase state despite finite positive, and in some cases substantial, enthalpies of mixing. Density functional theory calculations reveal that configurational entropy dominates the free energy landscape and compensates for the enthalpic penalty, whereas the vibrational and electronic entropies offer negligible contributions. The calculations predict that in many compositions, the single-phase state becomes stable at extremely high temperatures (>3000 K). Consequently, rapid quenching rates are needed to preserve solubility at room temperature and facilitate physical characterization. Physical vapor deposition provides this experimental validation opportunity. The computation/experimental data set generated in this work identifies "valence electron concentration" as an effective descriptor to predict structural and thermodynamic properties of multicomponent carbides and educate new formulation selections.

7.
Sci Data ; 8(1): 217, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34385453

RESUMO

The Open Databases Integration for Materials Design (OPTIMADE) consortium has designed a universal application programming interface (API) to make materials databases accessible and interoperable. We outline the first stable release of the specification, v1.0, which is already supported by many leading databases and several software packages. We illustrate the advantages of the OPTIMADE API through worked examples on each of the public materials databases that support the full API specification.

8.
Angew Chem Int Ed Engl ; 57(39): 12809-12813, 2018 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-30252191

RESUMO

Materials discovery enables both realization and understanding of new, exotic, physical phenomena. An emerging approach to the discovery of novel phases is high-pressure synthesis within diamond anvil cells, thereby enabling in situ monitoring of phase formation. Now, the discovery via high-pressure synthesis of the first intermetallic compound in the Cu-Pb system, Cu3Pb is reported. Cu3Pb is notably the first structurally characterized mid- to late-first-row transition-metal plumbide. The structure of Cu3Pb can be envisioned as a direct mixture of the two elemental lattices. From this new framework, we gain insight into the structure as a function of pressure and hypothesize that the high-pressure polymorph of lead is a possible prerequisite for the formation of Cu3Pb. Crucially, electronic structure computations reveal band crossings near the Fermi level, suggesting that chemically doped Cu3Pb could be a topologically nontrivial material.

9.
ACS Nano ; 12(2): 1285-1295, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29385326

RESUMO

Single- and few-layer metal chalcogenide compounds are of significant interest due to structural changes and emergent electronic properties on reducing dimensionality from three to two dimensions. To explore dimensionality effects in SnSe, a series of [(SnSe)1+δ]mTiSe2 intergrowth structures with increasing SnSe layer thickness (m = 1-4) were prepared from designed thin-film precursors. In-plane diffraction patterns indicated that significant structural changes occurred in the basal plane of the SnSe constituent as m is increased. Scanning transmission electron microscopy cross-sectional images of the m = 1 compound indicate long-range coherence between layers, whereas the m ≥ 2 compounds show extensive rotational disorder between the constituent layers. For m ≥ 2, the images of the SnSe constituent contain a variety of stacking sequences of SnSe bilayers. Density functional theory calculations suggest that the formation energy is similar for several different SnSe stacking sequences. The compounds show unexpected transport properties as m is increased, including the first p-type behavior observed in (MSe)m(TiSe2)n compounds. The resistivity of the m ≥ 2 compounds is larger than for m = 1, with m = 2 being the largest. At room temperature, the Hall coefficient is positive for m = 1 and negative for m = 2-4. The Hall coefficient of the m = 2 compound changes sign as temperature is decreased. The room-temperature Seebeck coefficient, however, switches from negative to positive at m = 3. These properties are incompatible with single band transport indicating that the compounds are not simple composites.

10.
J Am Chem Soc ; 140(9): 3385-3393, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29432682

RESUMO

Preparing homologous series of compounds allows chemists to rapidly discover new compounds with predictable structure and properties. Synthesizing compounds within such a series involves navigating a free energy landscape defined by the interactions within and between constituent atoms. Historically, synthesis approaches are typically limited to forming only the most thermodynamically stable compound under the reaction conditions. Presented here is the synthesis, via self-assembly of designed precursors, of isocompositional incommensurate layered compounds [(BiSe)1+δ] m[TiSe2] m with m = 1, 2, and 3. The structure of the BiSe bilayer in the m = 1 compound is not that of the binary compound, and this is the first example of compounds where a BiSe layer thicker than a bilayer in heterostructures has been prepared. Specular and in-plane X-ray diffraction combined with high-resolution electron microscopy data was used to follow the formation of the compounds during low-temperature annealing and the subsequent decomposition of the m = 2 and 3 compounds into [(BiSe)1+δ]1[TiSe2]1 at elevated temperatures. These results show that the structure of the precursor can be used to control reaction kinetics, enabling the synthesis of kinetically stable compounds that are not accessible via traditional techniques. The data collected as a function of temperature and time enabled us to schematically construct the topology of the free energy landscape about the local free energy minima for each of the products.

11.
ACS Nano ; 10(10): 9489-9499, 2016 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-27673390

RESUMO

(BiSe)1+δ(NbSe2)n heterostructures with n = 1-4 were synthesized using modulated elemental reactants. The BiSe bilayer structure changed from a rectangular basal plane with n = 1 to a square basal plane for n = 2-4. The BiSe in-plane structure was also influenced by small changes in the structure of the precursor, without significantly changing the out-of-plane diffraction pattern or value of the misfit parameter, δ. Density functional theory calculations on isolated BiSe bilayers showed that its lattice is very flexible, which may explain its readiness to adjust shape and size depending on the environment. Correlated with the changes in the BiSe basal plane structure, analysis of scanning transmission electron microscope images revealed that the occurrence of antiphase boundaries, found throughout the n = 1 compound, is dramatically reduced for the n = 2-4 compounds. X-ray photoelectron spectroscopy measurements showed that the Bi 5d3/2, 5d5/2 doublet peaks narrowed toward higher binding energies as n increased from 1 to 2, also consistent with a reduction in the number of antiphase boundaries. Temperature-dependent electrical resistivity and Hall coefficient measurements of nominally stoichiometric samples in conjunction with structural refinements and XPS data suggest a constant amount of interlayer charge transfer independent of n. Constant interlayer charge transfer is surprising given the changes in the BiSe in-plane structure. The structural flexibility of the BiSe layer may be useful in designing multiple constituent heterostructures as an interlayer between structurally dissimilar constituents.

12.
ACS Nano ; 9(8): 8440-8, 2015 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-26172638

RESUMO

A series of ferecrystalline compounds ([SnSe]1+δ)1(VSe2)1 with varying Sn/V ratios were synthesized using the modulated elemental reactant technique. Temperature-dependent specific heat data reveal a phase transition at 102 K, where the heat capacity changes abruptly. An abrupt increase in electrical resistivity occurs at the same temperature, correlated with an abrupt increase in the Hall coefficient. Combined with the magnitude and nature of the specific heat discontinuity, this suggests that the transition is similar to the charge density wave transitions in transition metal dichalcogenides. An ordered intergrowth was formed over a surprisingly wide compositional range of Sn/V ratios of 0.89 ≤ 1 + δ ≤ 1.37. X-ray diffraction and transmission electron microscopy reveal the formation of various volume defects in the compounds in response to the nonstoichiometry. The electrical resistivity and Hall coefficient data of samples with different Sn/V ratios show systematic variation in the carrier concentration with the Sn/V ratio. There is no significant change in the onset temperature of the charge density wave transition, only a variation in the carrier densities before and after the transition. Given the sensitivity of the charge density wave transitions of transition metal dichalcogenides to variations in composition, it is very surprising that the charge density wave transition observed at 102 K for ([SnSe]1.15)1(VSe2)1 is barely influenced by the nonstoichiometry and structural defects. This might be a consequence of the two-dimensional nature of the structurally independent VSe2 layers.

13.
Angew Chem Int Ed Engl ; 54(4): 1130-4, 2015 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-25522188

RESUMO

The structure of precursors is used to control the formation of six possible structural isomers that contain four structural units of PbSe and four structural units of NbSe2: [(PbSe)1.14]4[NbSe2]4, [(PbSe)1.14]3[NbSe2]3[(PbSe)1.14]1[NbSe2]1, [(PbSe)1.14]3[NbSe2]2[(PbSe)1.14]1[NbSe2]2, [(PbSe)1.14]2[NbSe2]3[(PbSe)1.14]2[NbSe2]1, [(PbSe)1.14]2[NbSe2]2[(PbSe)1.14]1[NbSe2]1[(PbSe)1.14]1[NbSe2]1, [(PbSe)1.14]2[NbSe2]1[(PbSe)1.14]1[NbSe2]2[(PbSe)1.14]1[NbSe2]1. The electrical properties of these compounds vary with the nanoarchitecture. For each pair of constituents, over 20,000 new compounds, each with a specific nanoarchitecture, are possible with the number of structural units equal to 10 or less. This provides opportunities to systematically correlate structure with properties and hence optimize performance.

14.
Inorg Chem ; 51(10): 5677-85, 2012 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-22554062

RESUMO

Transition-metal borides show not only promising physical properties but also a rich variety of crystal structures. In this context, quantum-chemical tools can shed light on important facets of the chemistry within such intermetallic borides. Using density-functional theory (DFT), we analyze in detail two phases of significant structural-chemical importance: the recently synthesized Ti(1+x)Os(2-x)RuB(2) and the isotypical Ti(1+x)Os(3-x)B(2). Starting from the observation of different Ti/Os occupations in X-ray crystal structure analysis, we assess suitable computational models and rationalize how the interplay of Ti-Ti, Ti-Os, and Os-Os bonds drives the site preferences. Then, we move on to a systematic investigation of the metal-boron bonds which embed the characteristic, trigonal-planar B(4) units within their metallic surroundings. Remarkably, the different Ti-B bonds in Ti(1+x)Os(2-x)RuB(2) (and also in its ternary derivative) are of vastly different strength, and the strength of these bonds does not correlate with their length. The tools presented in this work are based on simple and insightful chemical arguments together with DFT, and may subsequently be transferred to other intermetallic phases--transition-metal borides and beyond.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...